Introduction. According to Yu.V. Natochin, clinical nephropathy and renal physiology were always in close cooperation, and physiological research was always dictated by the clinic’s requests. The collaboration between the clinic and physiological science in medicine lasted until the end of the 19th century. During the time of S.P. Botkin and I.M. Sechenov, doctors trained at the physiological laboratories of K. Ludwig and K. Bernard, and the congresses of doctors were called the congresses of naturalists and doctors, physiological laboratories were structural units of the clinics. Logy was still at the stage of development, the idea of renal processes and functions in its infancy, were competing in a relationship and common urine formation theory did not exist. The idea of medicine existed kidney gland as having secretory function products of nitrogen metabolism.

Historiographical context of the study. The development of physiology largely determines the progress of renal processes and functions in its infancy, were competing in a relationship and common urine formation theory did not exist. The idea of medicine existed kidney gland as having secretory function products of nitrogen metabolism. 

Beginning the study of the process of urine formation associated with the works of K. Ludwig, R. Geidengain K. Ustimovich, N. Vvedensky. The construction of an adequate scheme of urination requires a new step - penetration into the nature of the regulation of renal function in the body. Every step in science has an author’s name. The works of famous physiologists and clinics were studied, including in the historical aspect, which was reflected in the works of Gibisch G., Jamison, R., Kutia S., Razunovskaya E., Natochin Yu., Samoilov V. The main body of the article. Beginning the study of processes of urine formation was laid Bartolomeo Eustachio, who in 1564 g in the treatise “Opuscula anatomica” in the section “De renum structura, officio et administratione” described education look like grooves on the surface of the furrow, by which the urine goes out, seeping out. A known scientist, by the name of Bartolomeo Eustachio, who in 1564 g in the treatise “Opuscula anatomica” in the section “De renum structura, officio et administratione” described education look like grooves on the surface of the furrow, by which the urine goes out, seeping out. A known scientist, by the name of Bartolomeo Eustachio, who in 1564 g in the treatise “Opuscula anatomica” in the section “De renum structura, officio et administratione” described education look like grooves on the surface of the furrow, by which the urine goes out, seeping out. A known scientist, by the name of Bartolomeo Eustachio, who in 1564 g in the treatise “Opuscula anatomica” in the section “De renum structura, officio et administratione” described education look like grooves on the surface of the furrow, by which the urine goes out, seeping out. A known scientist, by the name of Bartolomeo Eustachio, who in 1564 g in the treatise “Opuscula anatomica” in the section “De renum structura, officio et administratione” described education look like grooves on the surface of the furrow, by which the urine goes out, seeping out. A known scientist, by the name of Bartolomeo Eustachio, who in 1564 g in the treatise “Opuscula anatomica” in the section “De renum structura, officio et administratione” described education look like grooves on the surface of the furrow, by which the urine goes out, seeping out. A known scientist, by the name of Bartolomeo Eustachio, who in 1564 g in the treatise “Opuscula anatomica” in the section “De renum structura, officio et administratione” described education look like grooves on the surface of the furrow, by which the urine goes out, seeping out. A known scientist, by the name of Bartolomeo Eustachio, who in 1564 g in the treatise “Opuscula anatomica” in the section “De renum structura, officio et administratione” described education look like grooves on the surface of the furrow, by which the urine goes out, seeping out. A known scientist, by the name of Bartolomeo Eustachio, who in 1564 g in the treatise “Opuscula anatomica” in the section “De renum structura, officio et administratione” described education look like grooves on the surface of the furrow, by which the urine goes out, seeping out. A known scientist, by the name of Bartolomeo Eustachio, who in 1564 g in the treatise “Opuscula anatomica” in the section “De renum structura, officio et administratione” described education look like grooves on the surface of the furrow, by which the urine goes out, seeping out. Актуальні питання сучасних наук та історії медицини. Спільний українсько-румунський науковий журнал. (АПІСНІМ), 2020, № 2 (26), P. 107-110
years, opened tubules in the dermal papilla of the kidney, now known as the “ducts of Bellini” or “tubules of Bellini”. In the treatise “Exercitatio anatomica de structura et usu renum” Bellini showed that buds formed thousands of glands and many tubules and vessels that have fibrous flesh tubular, hollow inside. Probably, at the time, Eustachio saw a cluster of tubules of Bellini, but was not aware of the existence of tubes, mentioned by Bellini, which, if desired, can be seen for liquid injection and are genuine and true by the current of urine. This treatise marked the beginning of wide renown Bellini as anatomist and his glory, of the researcher, which with age grew stronger and stronger. In 1666, another Italian scientist, Marcello Malpighi, was opened in the kidneys of animals of the spherical formation associated with blood vessels, known today as “malpighi calf”. Being one of the pioneers of microscopic anatomy, Malpighi detected in renal cortex multiple “tiny gland is attached to the arteries...”-like apples <...> in the shape of a beautiful tree”, later described them in “De Renibus”. This contradicted the then prevailing view of the fact that the renal cortex is composed of fibers. Malpighi argued that the veins arise from the same areas in which the end terminal artery. Although he could not see intermediate links, he suggested that “gland” must also contain capillaries and the separation of blood and urine starts there. Although Malpighi did not see the connection between the glands and tubules with holes on the surface of the renal papillae open Bellini, he expressed the truth that urine is separated from blood in the glands and somehow finds its way to these excretory. Following the discovery made in 1782 A. M. Shumlyansky allowed to communicate malpighii bodies with renal tubules. A. M. Shumlyansky was the first researcher of the structure and function of the kidney. Theis for the degree of doctor of medicine: “De structura renun, tractatus physiologico-anatomicus edente” described by the original study.

A. M. Shumlyansky established vascular nature malpighia calf, and called it the glomerulus — a ball. He has shown that each renal tubule leaves the cavity in which hangs a ball of blood capillaries and tubule without interruption, not reported from neighboring and opens into the collecting tube. A. M. Shumlyansky described a knee-shaped bend in the course of renal tubules. Thanks to the work of F. Henle (1862), the notion of a structural unit of the kidney-the nephron. In his thesis A. M. Shumlyansky attempted to describe the function of kidneys in norm and at a pathology. It was a real breakthrough in the study of renal function and the writings of A. M. Shumlyansky did not go unnoticed. In the period from 1783 to 1803 was published eight essays and reviews of the work of A. M. Shumlyansky, and in 1788 dissertation was published the second edition in Würzburg.

New knowledge and ideas about the capsule that every student remembers as Shumlyansky-Bowman, 60 years later, in 1842, was completed by William Bowman. In the work of the “On the Structure and Use of the malpighian bodies of the Kidney, with Observations on the Circulation through that Gland” William Bowman described thin capsule that encloses the capillary glomerulus and the walls of the cavity in which it hangs. In their studies W. Bowman getting close to understanding the processes of reabsorption and secretion, describing two completely different systems of capillary vessels, through which blood. W. Bowman formulated secretory theory of formation of urine, according to which only water flows through the glomerular tuft, whose main purpose is to provide for the dissolution of the urea, uric acid, salts and other small-sized substances secreted tube. However, experimental evidence of this theory is not enough, and in explaining physiological processes in reasoning by William Bowman appeared inherent in the doctrine of vitalism “vitality”.

In 1844 K. Ludwig was experimentally proved the role of liquid filtration in the glomeruli of the kidney, occurring under the influence of physical factors — blood pressure — as the first stage of urine formation with subsequent reabsorption of part of the ultrafiltrate in the tubules. Carl Ludwig (1816-1895) defended his doctoral dissertation, which was rejected participation “vitality” in urine formation. Being one of the leaders antidialectical group, who believed that physiological phenomena can be explained exclusively by the laws of inorganic chemistry and physics, K. Ludwig described the process of urine formation as entirely reducible to physical processes: blood filtration in renal corpuscles and the reverse absorption of the filtrate in the tubules. He suggested that the glomerular capillaries, like other capillaries, is permeable to all components of blood except the formed elements, lipids and proteins. Liquid containing all of the remaining solute passes through the capillary under the action of hydrostatic pressure. The separation of the blood is a process of filtration and tubular secretion. However, this does not explain the discovery of large quantities of certain substances in the urine in the absence of secretion. K. Ludwig suggested that the filtrate volume should be much greater than the volume of urine to contain these substances, and came to the conclusion that most of the filtrate must be re-absorbed by the tubules. Laboratory studies K. Ludwig and his colleagues have confirmed this hypothesis. Theory K. Ludwig explained many observations: the effect of dehydration and excessive water consumption to the level of urination, and the presence of glucose and uric acid in the urine when their concentration in the blood is high.

In 1862, a pathologist F. Henle opened U-shaped division of the nephron, called in the next loop of Henle connects the proximal and distal convoluted tubules. In the manuscript called “Zur Anatomie der Niere” he showed that in the medulla of the kidneys there are two types of tubules: some were already known as the tubules of Bellini, and the other was a tube of smaller diameter, which was lined with squamous epithelium, parallel collecting tubes and returned, forming “lasso” or “loop” is in the direction of the medulla. F. Henle failed to show the relationship of these tubules with the rest of the collecting system of the kidney.

In 1863 G. F. Zavyrkin, who worked jointly with

---

4 A. M. Shumlyansky was the first researcher of the structure and function of the kidney. Thesis for the degree of doctor of medicine: “De structura renun, tractatus physiologico-anatomicus edente” described by the original study.
5 New knowledge and ideas about the capsule that every student remembers as Shumlyansky-Bowman, 60 years later, in 1842, was completed by William Bowman. In the work of the “On the Structure and Use of the malpighian bodies of the Kidney, with Observations on the Circulation through that Gland” William Bowman described thin capsule that encloses the capillary glomerulus and the walls of the cavity in which it hangs.

---

In 1873 Bunge G. established the existence of reciprocal interactions in the excretion of sodium and potassium in essentialization ratios of these ions in the diet ("the phenomenon Bunge" by D. gamble).

In 1874 histologist R. Heidenhain suggested a secretory method of urine formation. He completely exclude the possibility of the process of reabsorption in the tubules. The subsequent work of other researchers confirmed the existence of a secretory process in the kidney, although obligate, and bearing for its activities in nature, but playing in the process of urine formation role.

In the last quarter of the nineteenth zoologist A. O. Kovalevskiy made concerning histophysiological study of the excretory organs of invertebrates and draw conclusions about the existence of functional equivalents in morphologically different secretory organs of animals.

Liv pharmacologist W. Sobierskzy advanced (1893–1903), was the theory of active tubular reabsorption by the tubular epithelium, which most researchers have attributed a secretory function. His ideas not only reformed the theory of Ludwig, but also tweaked the performance of R. Heidenhain, seen in the tubules secretion where in fact there was a reabsorption.

In 1887 Tigerstedt and Bergman at the XII International Congress of therapeutic in Moscow reported the detection in aqueous extract of kidneys of rabbits substances that increase blood pressure, and called it renin.

Peters K. (1909) according to comparative anatomical studies the structure and development of the kidney in vertebrates came to the conclusion that the longer the thin part of loop of Henle in mammals, the more concentric the urine they can produce under conditions of dehydration.

In 1913, Bernard K. the experiments were repeated Jungmann and Meijer, stated at the impact on the brain development along with polyuria significant increase in the concentration and quantity of chlorine in the urine. "Saline injections" have caused the loss of about 1/5 of the total chlorine content in the body.

In the early 20's, the presser and antiuretic actions have been identified as chemically identical to a substance of the hormone of the posterior lobe of the pituitary gland called oxytocin-vasopressin.

Filtration-reabsorption no theory of urine formation, which is considered modern and today was presented the English pharmacologist A. R. Cushny, 1917. The theory was based on the principles of K. Ludwig, but is supplemented by recognition of the activity of the process is tubular reabsorption, and later obligative of tubules secretion.

But by the early twentieth century, or the physico-chemical and laboratory tests or organic - and pathophysiology, neither the experiment nor the classical representation of causal relationships in pathology was not satisfied medicine; did not indicate further ways of its development. As noted by Einstein, first, "... physics has influenced the development of medicine that made people believe in scientific methods... However, it has introduced biologists to the temptation to interpret the processes of life too primitive."15

"... Two big coup last exchange, which made pathological anatomy and biological interpretation of disease, led us, in spite of brilliant conquest and success, to a standstill," wrote in 1925, a German surgeon F. Sauerbruch, one of the founders of thoracic surgery. At this crossroads of medicine, S. P. Fedorov wrote in 1926 that "... in front of shining biological problems, it is felt that we should go there, that this path will lead us, probably in a big way. But how to go this route? On the right we paths and correctly goes on our work?"

D. D. Pletnev future of medicine seen in synthetic alloy of its social aspects with biological content of pathological processes, in turning it into a biosocial factor in the development of society, but without specifying paths this transformation of medicine.

Thus, the concern of scientific medicine ways to further her development, dissatisfaction with the interpretation of pathological phenomena from the standpoint of mechanistic materialism emerged in the first decades of the last century.

By the early 20's, last century the data of A. V. Palladin 1916 on excretion of creatinine with urine as an indicator of status of protein metabolism in muscles has allowed R. V. Rehberg, 1926 to develop creatininemia method of determining glomerular filtration and tubular reabsorption. At the same time, the beginning of use in the clinic, serum creatinine values as an indicator nitrogen excretion of kidney function, the instructions for which can be found in the monograph by E. M. Tareeva "Anemia britikovo".17

---

17 Ibidem.
Тимофійчук Інга — кандидат медичних наук, доцент кафедри фізіології ВДНЗ України "Буковинський державний медичний університет". Співавтор 5 підручників й автор понад 80 наукових статей. Коло наукових інтересів: вплив нутритивних чинників на структуру і функцію ниркової системи людини.

Тимофійчук Інга — candidate of medical science, assistant professor of physiology of Higher State Educational Estabishment of Ukraine "Bukovinian State Medical University". Co-author of 5 textbooks and of over 80 scientific articles. Research interests: pathological factors influence on the structure and function of the human nervous system.

Семененко Світлана — асистент кафедри судової медицини та медичного прапорництва Вищого державного навчального закладу України "Буковинський державний медичний університет". Автор та співавтор багатьох наукових та навчально-методичних праць, з них м.к. 1 інформаційний лист. Наукові інтереси: правове право, цивільне право і процес.

Семененко Світлана — candidate of biological sciences. Associate professor of physiology department named after Y. Kirshenblata of Bukovinian State Medical University. Author and co-author of over 28 scientific and educational works, including 1 information letter. Her research interests include: employ–ment law, civil law and process.

© I. Tymofiychuk, S. Semenenko, L. Boreyko, S. Yurnyuk, 2020

Advance Acces Publisher: June2020